“AI对于能源消耗方面的挑战是前所未有的,数据中心产生的能源消耗会越来越多。据统计,训练一个大型语言模型所消耗的能量大约比100个美国家庭一年的消耗总量还要多,除非改变现有的计算范式,否则到本世纪末,AI模型将消耗世界总电力的10%-20%。这也迫使我们改进现有的计算基础设施。”
Nicholas Harris相信,未来几年,光子技术将改变生成式AI和超级计算。
又能提高运算效率,又能节能降本,这也恰恰是科技巨头所需要的。
Nicholas Harris指出,“这个市场非常巨大,从微软到亚马逊,再到xAI和OpenAI等新进入者,每家拥有大型数据中心的科技公司都对光子计算表现出了极大的兴趣。”
这其中,不少公司已经是Lightmatter的客户。目前,公司正在与芯片制造商和云服务提供商合作,以实现大规模部署。不过Nicholas Harris并没有透露具体的客户名称。
他还表示,由于Lightmatter的设备是在硅上运行的,因此可以由现有的半导体制造设施生产,无需大规模改变工艺。
同时,他还暗示到:“这很可能是公司最后一轮融资。”这也意味着,Lightmatter有可能正在准备冲刺IPO。
实际上,今年7月,Lightmatter任命了英伟达前高管Simona Jankowski为CFO,进一步表明了其上市的决心。
几乎同时,位于纽约的Xscape Photonics也获得了4400万美元A轮融资,由IAG Capital Partners领投,思科投资和英伟达等机构跟投。其光子解决方案可优化AI数据中心的网络架构,将GPU的“逃逸带宽”提升10倍,能耗降低10倍。
华为入局、VC哄抢
国内光芯片赛道逐渐火热
不仅是国外,国内光芯片也正在成为一条火热的赛道。
2024年3月,位于苏州的光计算芯片公司光本位完成了近亿元人民币的天使+轮融资。这家成立于2022年的初创企业在半年内完成了天使和天使+轮融资。
其联合创始人&CEO程唐盛在牛津大学攻读博士期间,选择与高中时期好朋友熊胤江一起回国创建了光本位,并迅速获得了资本和市场的肯定。
“光芯片不像硅基电芯片(集成电路)一般有着对先进制程(光刻机在内)的强依赖。”熊胤江说到。
集成电路的性能提升符合摩尔定律,要提升性能必须加大晶体管密度,而随着摩尔定律陷入瓶颈,这一性价比变低。而光芯片却可以通过借助多个波长、频段的光进行并行计算,且彼此不会进行干扰,更能够成倍提升算力,这使得光芯片可以不依赖于制程的进步完成迭代。
基于此,光计算芯片有极大可能成为中国在算力领域换道超车的绝佳机会。
熊胤江表示,目前光芯片领域的国产化替代率较高,国内已经拥有了成熟的芯片设计软件,以及成熟的硅光工艺代工厂,国内外先进技术的差异不大。
80后MIT博士沈亦晨创立的曦智科技则已经获得三轮融资。其投资方包括真格基金、BV百度风投、经纬创投、祥峰投资、中科创星、招商局创投、中金资本等知名机构。
实际上,在MIT时期,沈亦晨与Lightmatter的三位创始人还有一段交集。
当时,沈亦晨也是Lightmatter小组的成员,一同在MIT $ 100K创业大赛中获得 10 万美元奖金。2017年,他们分别以一作、二作的身份,在顶级期刊 《自然·光子》发表了将光计算应用于人工智能领域的关键论文。该论文累积引用超1400次,为纳米光子领域近5年引用数最高的论文。
不过,当时由于采用了不同的技术路径,在2017年9月同时诞生了两家公司——曦智科技和Lightmatter。
成立不到两年,曦智科技便发布了全球首款光子芯片原型板卡,成功将当时占据半个实验室的整个光子计算系统集成到了常规大小的板卡上,验证了以光子替代电子进行高性能计算的开创性想法,并解决了光子芯片处理准确性问题。
2021年,在此基础上,曦智科技发布了高性能光子计算处理器PACE(光子计算引擎)。PACE成功验证了光子计算的优越性,跨出了整个光子计算行业的一大步。2023年,其首款兼容PCIe和CXL(Compute Express Link)协议的数据中心计算光互连硬件产品Photowave亮相。
祥峰投资合伙人李伟指出,由于光芯片是一个全新革命性的技术,并不是做某个国产替代的芯片,有比较明确的目标客户,因此会有一个市场发掘的过程。随着产品的进展顺利,曦智科技在发展过程中也逐步找到了商业落地的场景,例如银行间的高频交易、滴滴的路径导航规划。
如今,光芯片已是全球通信厂商必争之地。
近两年,华为集中投资光电芯片,一度掀起国内光芯片投资热潮。据统计,仅华为哈勃就已投资10余家光芯片相关企业。
国内一众VC、PE几乎无人不投光芯片,国内包括光本位、曦智科技在内的纵慧芯光、鲲游光电、长光华芯、芯耘光电、微源光子等公司纷纷遭到VC哄抢。